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ABSTRACT

This paper discusses the descriptional complexity of matrix grammars using leftmost
derivation of type two with respect to the number of nonterminals and matrices with two or
more productions. It proves that these matrix grammars need only nine nonterminals and
six matrices of length two or more to generate recursively enumerable languages.

1 INTRODUCTION

Formal language theory has recently investigated the economical transformations of
several formal models. The aim of these transformations is to reduce the number of non-
terminals or number of productions in grammars without any decrease of their generative
power.

Matrix grammars are one of the models that use regulated rewriting (see [1]). In
this model, the productions are arranged into sequences which have to be used as a whole
during one derivation step. It has been proved that the leftmost derivation of type two
increases the generative power of matrix grammars withε-productions to the family of
recursively enumerable languages (see [1]). This paper proves that these grammars need no
more than nine nonterminals and six matrices having more than one production to generate
recursively enumerable languages.

2 DEFINITIONS

This paper assumes the reader to be familiar with the formal language theory (see [2]).
Let V be an alphabet.V∗ is the free monoid generated byV under the operation

of concatenation,ε is the unit ofV∗. SetV+ = V∗ \ {ε}. An ε-production has its right-
hand side equal toε. A context production is a matrix of length two or more. (A matrix
of length one is sometimes referred to as a production.) We set alph(w) = {a ∈ V : w =



xay, wherex,y ∈ V∗} for all w ∈ V∗. For w ∈ V∗, |w| denotes the length ofw. For all
m,n∈ Z, min(m,n) denotes a minimum ofm andn.

A context-free grammarG= (N,T,P,S) is in Greibach normal formif every produc-
tion in P has the form ofA→ aα, whereA∈ N, a∈ T andα ∈ N∗. In case thatε ∈ L(G),
S→ ε ∈ P andS is on the right-hand side of no production inP.

A matrix grammaris a quadruple,G = (N,T,M,S), whereN and T are terminal
and nonterminal alphabet such thatN∩ T = �. S∈ N is an axiom, andM is a finite
set of matrices. Every matrix is a sequence of the formm : (p1, p2, . . . , pn), n≥ 1, with
pi = Ai → bi , Ai ∈ N, bi ∈V∗ for all 1≤ i ≤ n, whereV = N∪T. Matrices can be labeled
by some labelm. Let x,y∈V∗, (p1, p2, . . . , pn) ∈ M for somen≥ 1, pi = Ai → bi for all
i ∈ 〈1,n〉. If there are stringsx0,x1, . . . ,xn ∈V∗ such thatx0 = x, xn = y, xi−1 = x′i−1Aix′′i−1,
andxi = x′i−1bix′′i−1 for all i ∈ 〈1,n〉 and somex′i−1,x

′′
i−1 ∈V∗, thenx directly derives yin

G according to(p1, p2, . . . , pn), symbolically written asx ⇒G y [(p1, p2, . . . , pn)], or x ⇒
y for short. As usual, we extend⇒G to ⇒i

G (wherei ≥ 0), ⇒+
G, and⇒∗

G. The language
generated byG is L(G) = {x : x∈ T∗,S⇒∗ x}.

Let G = (N,T,M,S) be a matrix grammar,V = N∪T, and let there bex,y ∈ V∗,
and(p1, p2, . . . , pn) ∈ M for somen≥ 1, with pi = Ai → bi for all i ∈ 〈1,n〉. If there are
stringsx0,x1, . . . ,xn ∈ V∗ such thatx0 = x, xn = y, xi−1 = x′i−1Aix′′i−1, xi = x′i−1bix′′i−1 for
all i ∈ 〈1,n〉 and somex′i−1,x

′′
i−1 ∈ V∗, Ai 6∈ alph(x′i−1) for all i ∈ 〈1,n〉, and there is no

matrix (q1,q2, . . . ,qm) ∈M, with q j = B j → g j , j ∈ 〈1,m〉, m≥ 1, applicable tox such that
B1 ∈ alph(x′0), then the derivationx⇒G y [(p1, p2, . . . , pn)], is calledleftmost of type 2.

For details about left-most derivation of type 1 and 3, see [1].

3 RESULTS

Lemma 1. For every recursively enumerable language L over an alphabet T , there exist
two context-free grammars G1 = (N1,T ′,P1,S1) and G2 = (N2,T ′,P2,S2) and a homomor-
phism h: T ′→ T∗ such that L= {h(x) : x∈ L(G1)∩L(G2)}.

Proof. See [3].

Theorem 1. Every recursively enumerable language can be defined by a matrix grammar
with at most nine nonterminals and six context productions and using the leftmost deriva-
tion of type 2.

Proof. Let G1 = (N1,T,P1,S1) andG2 = (N2,T,P2,S2) be two context-free grammars in
Greibach normal form such thatN1∩N2 = �, h a homomorphism fromT to T ′∗, and
L = {h(x) : x∈ L(G1)∩L(G2)} a recursively enumerable language defined by them.

Define arbitrary bijective projectionsf : N1∪N2 → 0∗ and f ′ : N1∪N2 → 0′∗ such
that| f (A)|= | f ′(A)| for all A∈N1∪N2, and a bijective homomorphismf1 : (N1∪N2)∗→
{0,1}∗ such thatf1(ε) = ε, f1(A) = f (A)1, f1(Aα) = f1(A) f1(α) for all A∈ N1∪N2 and
α ∈ (N1∪N2)∗.

Define also bijective homomorphisms ˆg : T∗ → {0̂, 1̂}∗ andḡ : T∗ → {0̄, 1̄}∗ overT
such that ˆg(ε) = ḡ(ε) = ε, ĝ(a) ∈ 0̂∗1̂, ḡ(a) ∈ 0̄∗1̄, |ĝ(a)| = |ḡ(a)|, ĝ(aα) = ĝ(a)ĝ(α) and
ḡ(aα) = ḡ(a)ḡ(α) for all a∈ T andα ∈ T∗.



Introduce the matrix grammarG= (N,T ′,M,S) with the leftmost derivation of type 2
constructed in the following way.N = {S,0,1,0′,1′, 0̂, 1̂, 0̄, 1̄}, N∩ (N1∪N2) =�, andM
satisfies

1. S→ f1(S1) f1(S2) ∈M;

2. S→ ε ∈M if S1 → ε ∈ P1 andS2 → ε ∈ P2;

3. 1→ f ′(A)0′1′ĝ(a) f1(α) ∈M for all A→ aα ∈ P1, whereA∈ N1, a∈ T, α ∈ N∗
1 ;

4. 1→ f ′(A)0′1′ḡ(a)h(a) f1(α) ∈M for all A→ aα ∈ P2, whereA∈N2, a∈ T, α ∈N∗
2 ;

5. (0→ ε,0′→ ε) ∈M, (0′→ ε,1′→ ε) ∈M, 0′→ 0′ ∈M, 1′→ 1′ ∈M;

6. (0̂ → ε, 0̄ → ε, 1̄ → 1̄) ∈ M, (1̂ → ε, 1̄ → ε) ∈ M, (0̂ → 0̂, 1̄ → 1̄) ∈ M, (0̂ → 0̂,
0̄→ 0̄) ∈M.

Without any loss of generality, assume that, if possible, there is allways used one
of the matrices producing a sentential form different from the original one when more
matrices are applicable in the next derivation step.

We prove thatG generates the languageL(G) = L = {h(x) : x∈ L(G1)∩L(G2)}.
Basic idea: Roughly speaking,G first simulates the leftmost derivation inG1 using the
matrices of (3) and (5). Then, it simulates the leftmost derivation inG2 using the matrices
of (4) and (5). During the simulation ofG2, it checks whether the string being generated
by G2 corresponds to the string generated byG1. To do this, it uses the matrices of (6).

First, we prove the following claims.

Claim 1. Let x= u0m0′n1′vw, where u∈ ({0̂, 1̂}∪T ′)∗, v∈ 0̂∗1̂∪T ′∗, w∈ {0,1}∗, m,n≥ 0,
and let j= min(m,n). Then, x⇒ j y, where y= u0m− j0′n− j1′vw, and there are no z6= y
such that x⇒ j z, and no z′ ∈ T ′∗ such that x⇒k z′, 0 < k < j.

Proof. Let x= u0m0′n1′vw, whereu∈ ({0̂, 1̂}∪T ′)∗, v∈ 0̂∗1̂∪T ′∗, w∈ {0,1}∗, m≥ 0 and
n≥ 0. The claim is proven by induction on min(m,n).

Basis: Let m andn be such that min(m,n) = 0. Then,u0m0′n1′vw⇒0 u0m0′n1′vw.

Induction hypothesis: Suppose that the claim holds for all pairs ofmandn, m,n≥ 0, such
that min(m,n)≤ k, for somek≥ 0.

Induction step: Let us considerm andn such that min(m,n) = k+ 1. Sincek+ 1≥ 1,
m> 1 andn > 1 and we can express the stringx = u00m−10′0′n−11′vw. Due to the left-
most derivation of type 2, the only applicable matrix is(0→ ε,0′ → ε). By its applica-
tion we obtainu0m−10′n−11′vw having min(m− 1,n− 1) = k. By induction hypothesis
u0m−10′n−11′vw ⇒k u0m−1−k0′n−1−k1′vw. That is,x ⇒k+1 u0m−(k+1)0′n−(k+1)1′vw and
the claim holds.

Claim 2. Let x= u0m0′n1′vw, where u∈ ({0̂, 1̂}∪T ′)∗, v∈ 0̂∗1̂∪T ′∗, w∈ {0,1}∗, m,n≥ 0.
If n = m+1, then x⇒m+1 y, y= uvw, and there is no z6= y such that x⇒m+1 z; if n> m+1,
then for all k≥m+1, x⇒k y, y= u0′n−(m+1)vw, and there is no z6= y such that x⇒k z; if
n < m+1, then for all k≥ n, x⇒k y, y= u0m−n1′vw, and there is no z6= y such that x⇒k

z.



Proof. Let x = u0m0′n1′vw, whereu ∈ ({0̂, 1̂}∪T ′)∗, v ∈ 0̂∗1̂∪T ′∗, w ∈ {0,1}∗, m≥ 0,
andn≥ 0. We examine all relations betweenm andn.

1. Letn = m+1. By Claim 1,u0m0′m+11′vw⇒m u0′1′vw. Due to the leftmost deriva-
tion of type 2 the only applicable matrices are(0′ → ε,1′ → ε) and 0′ → 0′. As
agreed above, we allways use a matrix producing sentential form different from the
current one, whenever it is possible. Thus,u0′1′vw⇒ uvw[(0′→ ε,1′→ ε)]; that is,
x⇒m+1 uvw.

2. Let n > m+ 1. By Claim 1, u0m0′n1′vw ⇒m u0′n−m1′vw. Sincen > m+ 1 im-
plies n−m≥ 2, we can expressu0′n−m1′vw = u0′0′0′n−m−21′vw. The only appli-
cable matrices are(0′ → ε,1′ → ε) and 0′ → 0′. Therefore,u0′0′0′n−m−21′vw ⇒
u0′0′n−m−2vw [(0′ → ε,1′ → ε)]. The only applicable matrix is 0′ → 0′. Since this
matrix lefts the sentential form unchanged,u0′0′n−m−2vw⇒∗ u0′0′n−m−2vw. Thus,
x⇒k u0′n−m−1vw for all k≥m+1.

3. Let n < m+ 1. By Claim 1,u0m0′n1′vw⇒n u0m−n1′vw. The only applicable ma-
trix is 1′ → 1′. This matrix lefts the sentential form unchanged, again. Therefore,
u0m−n1′vw⇒∗ u0m−n1′vw, andx⇒k u0m−n1′vw for all k≥ n.

Claim 3. Let x= 0̂m1̂u0̄n1̄v, where u∈ {0̂, 1̂}∗T ′∗{0,0′,1′}∗, v∈ T ′∗{0,1}∗, m≥ 0 and
n≥ 0, and let j= min(m,n). Then, x⇒ j y, where y= 0̂m− j 1̂u0̄n− j 1̄v, and there are no
z 6= y such that x⇒ j z, and no w∈ T ′∗ such that x⇒k w, 0 < k < j.

Proof. By analogy with the proof of the Claim 1, this claim can be proven by induction on
min(m,n).

Claim 4. Let x= 0̂m1̂u0̄n1̄v, where u∈ {0̂, 1̂}∗T ′∗{0,0′,1′}∗, v∈ T ′∗{0,1}∗, m,n≥ 0. If
m= n, then x⇒m+1 y, y= uv, and there is no z6= y such that x⇒m+1 z; if m> n, then
for all k ≥ n, x⇒k y, y= 0̂m−n1̂u1̄v, and there is no z6= y such that x⇒k z; if m < n,
then x⇒m+1 y, y= u0̄n−mv, and there is no z6= y such that x⇒m+1 z; furthermore, x⇒k

y for all k≥m+1 if 0̂∈ alph(u).

Proof. Let x = 0̂m1̂u0̄n1̄v, whereu ∈ {0̂, 1̂}∗T ′∗{0,0′,1′}∗, v ∈ T ′∗{0,1}∗, m,n≥ 0. We
examine all relations betweenm andn.

1. Letm= n. By Claim 3,0̂m1̂u0̄m1̄v⇒m 1̂u1̄v. The only applicable matrix is(1̂→ ε,
1̄→ ε). Thus,1̂u1̄v⇒ uv [(1̂→ ε, 1̄→ ε)], andx⇒m+1 uv.

2. Letm> n. By Claim 3,0̂m1̂u0̄m1̄v⇒n 0̂m−n1̂u1̄v. Becausem> n impliesm−n≥ 1,
the only matrix that can be applied and has to be applied is(0̂→ 0̂, 1̄→ 1̄). Since
this matrix lefts the sentential form unchanged,0̂m−n1̂u1̄v⇒∗ 0̂m−n1̂u1̄v. Thus,x⇒k

0̂m−n1̂u1̄v for all k≥ n.

3. Letm< n. By Claim 3,0̂m1̂u0̄n1̄v⇒m 1̂u0̄n−m1̄v. The only possible derivation step
is 1̂u0̄n−m1̄v ⇒ u0̄n−mv [(1̂→ ε, 1̄→ ε)]; that is,x ⇒m+1 u0̄n−mv. If 0̂ ∈ alph(u),
then we can expressu0̄n−mv = y0̂z0̄n−mv, wherey ∈ 1̂∗, z∈ {0̂, 1̂}∗T ′∗{0,0′,1′}∗.
Observe thatn−m≥ 1, so the matrix(0̂→ 0̂, 0̄→ 0̄) can be applied. Furthermore,



due to the leftmost derivation of type 2 it is also the only applicable matrix. This
matrix lefts the sentential form unchanged; therefore,y0̂z0̄n−mv ⇒∗ y0̂z0̄n−mv, and
x⇒k u0̄n−mv for all k≥m+1.

Define bijective homomorphismsδ1 : (N1∪T)∗→{0,1, 0̂, 1̂}∗, andδ2 : (N2∪T)∗→
({0,1}∪T ′)∗ asδ1(ε) = ε, δ1(a) = ĝ(a), δ1(A) = f1(A), δ1(Xα) = δ1(X)δ1(α), δ2(ε) = ε,
δ2(a) = h(a), δ2(B) = f1(B), andδ2(Yβ) = δ2(Y)δ2(β) for all a∈ T, A∈ N1, X ∈ N1∪T,
α ∈ (N1∪T)∗, B∈ N2, Y ∈ N2∪T, andβ ∈ (N2∪T)∗.

Next, we discuss the derivation inG. Assume that any derivation inG1 or G2 in the
next paragraphs is the leftmost derivation.

First derivation step is allwaysS⇒ f1(S1) f1(S2). In case thatS→ ε ∈M, the deriva-
tion stepS⇒ ε is also possible. We can expressf1(S1) f1(S2) asδ1(S1)δ2(S2).

Suppose thatS1 ⇒i
G1

xAα, wherex∈ T∗, A∈ N1, α ∈ N∗
1 , andS⇒ j

G δ1(xAα)δ2(S2)
for somei ≥ 0, j ≥ 1. We can expressδ1(xAα)δ2(S2) asδ1(x) f (A)1δ1(α)δ2(S2). The
matrices of 3 and 4 are the only applicable. It follows from Claim 2 that there can
be used only a matrix simulating someA → aβ ∈ P1, a ∈ T, β ∈ N∗

1 . By an applica-
tion of such matrix we obtainδ1(x) f (A) f ′(A)0′1′ĝ(a) f1(β)δ1(α)δ2(S2). By Claim 2,
this derivesδ1(x)ĝ(a) f1(β)δ1(α)δ2(S2). The newly generated string can be expressed
as δ1(xaβα)δ2(S2). The derivationδ1(xAα)δ2(S2) ⇒+

G δ1(xaβα)δ2(S2) corresponds to
xAα ⇒G1 xaβα [A→ aγ]. At this point, we see thatS⇒+

G δ1(x)δ2(S2) for all x∈ L(G1).
Expressx∈ L(G1) asx = uav, wherea∈ T, u,v∈ T∗. Suppose thatS2 ⇒i

G2
uAα,

A ∈ N2, β ∈ N∗
2 , and δ1(x)δ2(S2) ⇒ j

G δ1(av)δ2(uAα) for some i, j ≥ 0. We can ex-
pressδ1(av)δ2(uAα) as ĝ(a)δ1(v)δ2(u) f (A)1δ2(α). The only applicable matrices are
those of (3) and (4). It follows from claims 2 and 4 that only a matrix simulating some
A→ aβ ∈ P2, β ∈ N∗

2 , can be applied. Otherwise, terminal string cannot be derived. By
an application of such matrix we obtain ˆg(a)δ1(v)δ2(u) f (A) f ′(A)0′1′ḡ(a)h(a) f1(β)δ2(α).
By claims 4 and 2, this derivesδ1(v)δ2(u)h(a) f1(β)δ2(α) = δ1(v)δ2(uaβα). The deriva-
tion δ1(av)δ2(uAα) ⇒+

G δ1(v)δ2(uaβα) corresponds touAα ⇒G2 uaβα [A→ aβ]. At this
point, we see thatS⇒+

G δ1(x)δ2(S2) ⇒+
G δ2(x), wherex∈ L(G1), andx∈ L(G2). Since

δ2(x) = h(x), S⇒+
G h(x), x∈ L(G1)∩L(G2). Therefore, the theorem holds.

Though this paper proves that matrix grammars with no more than nine nonterminals
and six context productions using the leftmost derivation of type 2 describe recursively
enumerable languages, there is given no algorithm that transforms a Chomsky grammar of
type 0 to a reduced matrix grammar.
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