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ABSTRACT

This paper discusses the descriptional complexity of matrix grammars using leftmost
derivation of type two with respect to the number of nonterminals and matrices with two or
more productions. It proves that these matrix grammars need only nine nonterminals and
six matrices of length two or more to generate recursively enumerable languages.

1 INTRODUCTION

Formal language theory has recently investigated the economical transformations of
several formal models. The aim of these transformations is to reduce the number of non-
terminals or number of productions in grammars without any decrease of their generative
power.

Matrix grammars are one of the models that use regulated rewriting (see [1]). In
this model, the productions are arranged into sequences which have to be used as a whole
during one derivation step. It has been proved that the leftmost derivation of type two
increases the generative power of matrix grammars esphoductions to the family of
recursively enumerable languages (see [1]). This paper proves that these grammars need no
more than nine nonterminals and six matrices having more than one production to generate
recursively enumerable languages.

2 DEFINITIONS

This paper assumes the reader to be familiar with the formal language theory (see [2]).
LetV be an alphabetV* is the free monoid generated Byunder the operation

of concatenationg is the unit ofV*. SetV*™ =V*\ {€}. An g-production has its right-

hand side equal te. A context production is a matrix of length two or more. (A matrix

of length one is sometimes referred to as a production.) We sefvglph{acV :w=



xay, wherex,y € V*} for all we V*. Forw € V*, |w| denotes the length of. For all
m,n € Z, min(m,n) denotes a minimum ah andn.

A context-free grammas = (N, T, P,S) is in Greibach normal fornif every produc-
tion in P has the form oA — aa, whereA € N, ac T anda € N*. In case that € L(G),
S— € € PandSis on the right-hand side of no productionRn

A matrix grammaris a quadrupleG = (N,T,M,S), whereN and T are terminal
and nonterminal alphabet such thdth T = ©@. Se& N is an axiom, andM is a finite
set of matrices. Every matrix is a sequence of the farm(ps, p2,...,pn), N > 1, with
pi=A —bi, A eN,b eV*forall1<i<n, whereV =NUT. Matrices can be labeled
by some labeim. Letx,y € V*, (p1,p2,---,Pn) € M for somen > 1, pi = A — by for all

€ (1,n). If there are string%o, x1,..., X € V* such thako =X, Xa =Yy, Xi—1 =X _;AX 4,
andx = x_,bix’ ; for all'i € (1,n) and somex_,,x’ ; € V*, thenx directly derives yn
G according to(p1, p2, - - -, Pn), Symbolically written ax =g vy [(p1, P2, ---,Pn)], Or X =
y for short. As usual, we extend-g to :>iG (wherei > 0), =¢, and=-§. The language
generated bysisL (G) = {x:x € T*,S=" x}.

Let G= (N,T,M,S) be a matrix grammal/ = NUT, and let there be&y € V*,
and(p1,p2,..-,Pn) € M for somen > 1, with pj = A; — b; for all i € (1,n). If there are
stringsxg, X1, ..., Xy € V* such thatxo = X, Xn =y, Xi—1 =X_;AX’ 4, X =X_,bix" ; for
alli € (1,n) and someq_;,x" ; € V¥, Ay € alph(x_,) for all i € (1,n), and there is no
matrix (gg,d, - . .,qm) € M, with qj = B; — g;, j € (1,m), m> 1, applicable to such that
B € alph(x;), then the derivation =g y [(p1, P2, .. -, Pn)], is calledleftmost of type 2

For details about left-most derivation of type 1 and 3, see [1].

3 RESULTS

Lemma 1. For every recursively enumerable language L over an alphabet T, there exist
two context-free grammarsiG= (N1, T’,P1,S) and G = (N2, T/, P, S) and a homomor-
phism h: T/ — T* such that L= {h(x) : x € L(G1) NL(G2) }.

Proof. See [3]. [

Theorem 1. Every recursively enumerable language can be defined by a matrix grammar
with at most nine nonterminals and six context productions and using the leftmost deriva-
tion of type 2.

Proof. Let G1 = (N1, T,P1,S) and Gy = (N2, T, P, ) be two context-free grammars in
Greibach normal form such that NN, = @, h a homomorphism fronT to T’*, and
L ={h(x) : xe€ L(G1) NL(Gp)} a recursively enumerable language defined by them.

Define arbitrary bijective projectionf: Ny UN, — 0* and f' : N; UN, — 0™* such
that|f (A)| = | f/(A)| for all A€ N; UNy, and a bijective homomorphisif : (N; UNp)* —
{0,1}* such thatfy(g) =€, f1(A) = f(A)1, f1(Aa) = f1(A) f1(a) for all A € N; UN, and
GE(NlUNz)*. o

Define also bijective homomorphisrgs T* — {0,1}* andg: T* — {0,1}* overT
such thag(e) = gle) = &, §(a) € 0°1, gla) € 0°L, |§(a)| = |a(a)|, §(an) = §(a)§(a) and
g(ao) =g(a)g(a) forallac T anda € T*.



Introduce the matrix gramm& = (N, T’,M, S) with the leftmost derivation of type 2

constructed in the following wayN = {S,0,1,0,1/,0,1,0,1}, NN (N; UNp) = @, andM
satisfies
1. S— f1(S)f1(S) € M;
.S—eeMif§ —eecPandS, — e P

. 1= f'(A)0'1§(a)f1(a) € M forall A— aa € P;, whereAe N, ae T, a € Nj;

.(0—g0—¢)eM, (00—l —eeM0—-0eM,1—-1eM;

2
3
4. 1— f'(A)0'Y'g(a)h(a)fi(a) € M forall A— aa € P>, whereAc N, ac T, a € N3;
5
6

. 0—-e0—-el1—-1)eM (1-el—8ecM 0—-01—-1)eM, (00
0—0) e M.

Without any loss of generality, assume that, if possible, there is allways used one
of the matrices producing a sentential form different from the original one when more

matrices are applicable in the next derivation step.
We prove that generates the languabéG) =L = {h(x) : x € L(G1) NL(G2)}.

Basic idea Roughly speakingG first simulates the leftmost derivation @& using the
matrices of (3) and (5). Then, it simulates the leftmost derivatidBsmising the matrices

of (4) and (5). During the simulation @, it checks whether the string being generated

by G, corresponds to the string generatedday To do this, it uses the matrices of (6).
First, we prove the following claims.

Claim 1. Let x=u0™0'""1'vw, where & ({0,1}UT")*, v 0*1UT", we {0,1}*, mn>0,
and let j=min(m,n). Then, x=y, where y= u0™ 10"/ 1'vw, and there are no # y
such that x=1 z, and no ze T'* such that x=X 7, 0 < k < j.

Proof. Letx = u0™0""1'vw, whereu e ({0,1} UT")*,ve 0*1UT", we {0,1}*, m> 0 and
n> 0. The claim is proven by induction on nfim,n).

Basis Letmandn be such that mifm,n) = 0. Then,u0M0"1'vw =0 uOM0"1/vw.

Induction hypothesis Suppose that the claim holds for all pairsandn, m,n > 0, such
that minim, n) <k, for somek > 0.

Induction step Let us considem andn such that miim,n) = k+ 1. Sincek+1> 1,
m> 1 andn > 1 and we can express the strirg= u00™ 0’0" *1'vw. Due to the left-
most derivation of type 2, the only applicable matrix&— €,0' — €). By its applica-
tion we obtainu0™ 20" 11'vw having mifm—1,n— 1) = k. By induction hypothesis
uom-10" 11w =k w01k Kyw That is, x =k uom- (kL o=k 1 and
the claim holds. m

Claim 2. Let x=u0™0"1'vw, where & ({0,1}UT’)*, ve 0*1UT"*, we {0,1}*, mn> 0.
If n=m+1, then x="1y, y=uvw, and there is no2 y such that x==""1 z; if n > m+1,
then for all k> m+1, x =Xy, y=u0™ (™Dyw, and there is no #Z y such that x=K z; if
n< m+1, then for all k> n, x=Ky, y=u0™"1'vw, and there is no £ y such that x=K
z.



Proof. Let x = u0™0"1'vw, whereu € ({0,1} UT)*, ve 0*1UT"*, we {0,1}*, m> 0,
andn > 0. We examine all relations betwesmandn.

1. Letn=m+ 1. By Claim 1,u0™0™+11’vw =™ u0’1’vw. Due to the leftmost deriva-
tion of type 2 the only applicable matrices a@ — €,1’ — €) and 0 — 0. As
agreed above, we allways use a matrix producing sentential form different from the
current one, whenever it is possible. Thu81'vw = uvw[(0' — g,1" — €)]; that is,
x =M1 uvw,

2. Letn> m+1. By Claim 1,u0™0"1'vw =™ u0™ ™1’'vw. Sincen > m+1 im-
pliesn—m> 2, we can express0™ M1'vw = u0'0’'0™ "™ 21'vw. The only appli-
cable matrices ar¢d — €,1’ — €) and 0 — O'. Therefore,u0'0’'0""21'vw =
uo'0""2yw [(0’ — &,1’ — €)]. The only applicable matrix is'G- 0. Since this
matrix lefts the sentential form unchange®,0" ™ 2yw =* u0’0"™™2vw. Thus,

Kuom"lywfor all k > m+ 1.

3. Letn < m+1. By Claim 1,u0™0"1'vw =" u0™ "1'vw. The only applicable ma-
trix is ' — 1’. This matrix lefts the sentential form unchanged, again. Therefore,
u0™ "1'yw =* u0™ "1'vw, andx =K u0™ "1’vw for all k > n. O

Claim 3. Let x= 0™1u0"1v, where ue {O 11*T#{0,0 1}, ve T{0,1}*, m> 0 and
n>0, and let j=min(m,n). Then, x=>!y, where y— 0™ 11u0™11v, and there are no
z+ y such that x=1 z, and no we T’* such that x==Kw, 0 < k < j.

Proof. By analogy with the proof of the Claim 1, this claim can be proven by induction on
min(m, n). O

Claim 4. Let x= 0M1u0"1v, where ue {0,1}*T"*{0,0/,1'}*, ve T*{0,1}*, mn> 0. If
m=n, then x:m“ y, y=uv, and there is no # y such that x="1 z; |f m > n, then
forallk >n, x=Xy, y= 0™ Miulv, and there is no # y such that x=K z; if m< n,

then x="1y, y= u0™ ™y, and there is no # y such that x>™1 z; furthermore, Xk
y for all k > m+1if 0 € alph(u).

Proof. Let x = 0™1u0"1v, whereu € {0,1}*T#{0,0/,1'}*, v e T**{0,1}*, m;n > 0. We
examine all relations betweenandn.

1. Letm=n. By Claim 3, 0™1u0™M1v =M 1ulv. The only applicable matrix i€l — e,
1—¢). Thus,ulv= uv[(1—¢,1— ¢€)], andx =1 uv.

2. Letm> n. By Claim 3,0™u0™v =" 0™ "1ulv. Becausen > n impliesm—n>1,
the only matrix that can be applied and has to be applle‘p is0,1— 1). Since
this matrix lefts the sentential form unchang@®; "1ulv =* 0™ "1ulv. Thus x =K
O™-n1ulv for all k > n.

3. Letm< n. By Claim 3, 0M1u0"1v / = M 7u0™™1v. The only possible derivation step
is U0 My = u0™ My [(1 — £,1 — €)]; that is,x =™ u0™ ™. If 0 € alph(u),
then we can express)™ My = yOzOn My, wherey € 1*, ze {0,1}*T"*{0,0/,1'}*.
Observe thah—m> 1, so the matrix0 — 0,0 — 0) can be applied. Furthermore,



due to the leftmost derivation of type 2 it is also the only applicable matrix. This
matrix lefts the sentential form unchanged; therefgz0"™v =* y0z0" "y, and
x =K u0" " for all k > m+1. O

Define bijective homomorphisndg : (N;UT)* — {0,1,0,1}*, andd; : (N2UT)* —
({0,1}UT")* asdi(e) =€, d1(a) = §(a), d1(A) = f1(A), d1(Xa) = 01(X)d1(a), d2(€) =,
d2(a) = h(a), &(B) = f1(B), andd;(YP) = d2(Y)d(B) forallae T,Ae N;, X e NpUT,
ae (NtUT)*,BEN2, Y e NoUT, andB € (N2UT)*.

Next, we discuss the derivation (& Assume that any derivation {@; or G, in the
next paragraphs is the leftmost derivation.

First derivation step is allway8=- f1(S) f1(S). In case tha— € € M, the deriva-
tion stepS=> ¢ is also possible. We can exprelg$S; ) f1(S) asd1(S1)02(S).

Suppose thah, :>i61 XA, wherex € T*, A€ Ny, a € Nj, andS=-{ 81(xA0)32(S)
for somei > 0, j > 1. We can expres8;(xAn)d(S) asd;(X)f(A)101(a)d(S). The
matrices of 3 and 4 are the only applicable. It follows from Claim 2 that there can
be used only a matrix simulating somde— a3 € P, ac T, B € Nj. By an applica-
tion of such matrix we obtaid;(x)f(A)f'(A)0L'§(a)f1(B)d1(a)d2(S). By Claim 2,
this derivesd;(x)§(a) f1(B)d1(a)d2(S). The newly generated string can be expressed
as 81 (xaBa)d2(S). The derivationd; (xAn)dx(S) =& 81(xaPa)d(S) corresponds to
XA =, XaPa [A— ay]. At this point, we see tha& = 81(x)32(S) for all x € L(Gy).

Expressx € L(G1) asx = uav, whereac T, u,v € T*. Suppose tha® :>iG2 UAQ,

A€ Ny, BeN;, andd1(X)&(S) =& d1(av)dz(uAa) for somei, j > 0. We can ex-
pressd;(av)d(UAa) as gla)di(v)dz(u) f(A)1d2(a). The only applicable matrices are
those of (3) and (4). It follows from claims 2 and 4 that only a matrix simulating some
A — af € P, B e N3, can be applied. Otherwise, terminal string cannot be derived. By
an application of such matrix we obtad(a)d: (v)d2(u) f (A) f/(A)0'1'g(a)h(a) f1(B)d2(a).

By claims 4 and 2, this deriva¥ (v)dz(u)h(a) f1(B)d2(a) = d1(v)d2(uaBa). The deriva-

tion &1 (av)dz(uAa) =& 31(v)d2(uaPa) corresponds taAa =g, uaBa [A — af]. At this
point, we see thab =& 31(X)52(S) =& d2(x), wherex € L(Gy), andx € L(Gy). Since
32(X) = h(x), S=¢ h(x), x € L(G1) NL(Gy). Therefore, the theorem holds. O

Though this paper proves that matrix grammars with no more than nine nonterminals
and six context productions using the leftmost derivation of type 2 describe recursively
enumerable languages, there is given no algorithm that transforms a Chomsky grammar of
type 0 to a reduced matrix grammar.
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