
PARALLEL TRANSLATION BASED ON GRAMMAR
SYSTEMS

Stanislav ELBL, Doctoral Degree Programme (2)
Dept. of Information Systems, FIT, VUT

E-mail: elbl@fit.vutbr.cz

Supervised by: Dr. Alexander Meduna

ABSTRACT
This contribution introduces a method for parallel language translation based on

grammar systems. It describes principle of parallel syntax analysis and discusses sample
implementation of compiler and its results.

1 GRAMMAR SYSTEM

1.1 DEFINITION
Grammar system is a construct

G = (N, Σ, S, P1, P2, …Pn)

where N is a set of nonterminal symbols, Σ is a set of terminal symbols, S ∈ N is
starting nonterminal and each Pi, i ∈ { 1, …, n }, is a finite set of context free productions,
called i-th component of G.

Four-tuple Gi = (N, Σ, S, Pi) is called i-th grammar of G.

1.2 DERIVATING MODES
Several derivation modes are used in grammar systems. Some of them are introduced

here.

• Terminating derivation by the i-th component:

x i⇒t y if and only if x ⇒* y in Gi = (N, Σ, S, Pi) and y i≠> z for all z ∈ (N ∪ Σ)*

where y i≠> z means, that y does not derive z in the grammar Gi.

• K-step derivation, at least k-step derivation and at most k-step derivation:

x i⇒=k y if and only if x ⇒k y in Gi.

x i⇒≤k y if and only if x ⇒j y in Gi, j≤k.

x i⇒≥k y if and only if x ⇒j y in Gi, j≥k.

Using these derivating modes, the generative power of grammar system increases in
comparison with context free grammars. However this contribution does not introduce this.

1.3 UTILIZATION OF GRAMMAR SYSTEM FOR PARALLEL TRANSLATION
The idea of translation parallelization is based on the fact, that one grammar of a

grammar system can “work” on several places in the derivate sentence form. Following
grammar system serves as an example:

G = ({S, A, …}, Σ, S, P1, P2)

P1 = { S → AS, S→A }

P2 = { A → …}

A grammar G1 of this system generates sentence forms A+ - a strings of nonterminal A.
Then G2 continues derivation. Separate fragments of sentence form generated by G2 are
independent and their derivation can be processed simultaneously.

Fig. 1: Sample derivation tree

There is a sample derivation tree on the picture above. It corresponds to derivation S ⇒*
AA ⇒* x…y…. Generation of substrings beginning with x and y can proceed together.

1.4 PARALLEL SYNTAX ANALYSIS
The work must be distributed to several threads to achieve parallel syntax analysis. To

do this, there must be found parts in source code, which can be translated together,
independently. On the picture above the substrings beginning with x and y represent these
parts. In the case of any programming language, procedures, functions or code blocks can
represent them.

Fast syntax analysis can be provided to find the beginnings and ends of the blocks. Its
method is given by source language. For example it can look for appropriate key words (e.g.
procedure, function, endproc, codeend), find end of block corresponding to its start (e.g. by

counting symbols “{“ and “}”). A syntax tree is not built during this search.

Whatever method of syntax analysis can be used - recursive descent (it is used in
implemented compiler), LR(1) parser based on a table and so on. It is necessary, that analysis
of several inputs can be proceeded in one time. This is reason, why some automatic parser
generators (as Yacc, Bison or Lex) can’t be used - they often use global variables, which
would cause malfunction of the compiler.

2 IMPLEMENTATION

A sample compiler was implemented to confirm this method properties and
applicability. There is its implementation shortly described in this section and the results are
summarized in next one.

2.1 INPUT LANGUAGE
Subset of language Pascal was chosen for testing purposes of this method. It’s syntax

analysis is not difficult, because it is LL(1) language. There is recursive descent method used
in the implementation of compiler. Translation of basic integer and floating-point arithmetic,
local variables access, function and procedure calls with parameters passing, for statement, if
statement, assignment, short evaluation of logical expressions and the call of built in
procedures exit, write and writeln are implemented.

2.2 TARGET CODE
Java class file is used as the target code of compiler. This code can be interpreted by

any Java virtual machine. Class file is used for binary representation of class - this means, that
any class must be created from the source program. Static methods of this class are created
from procedures and functions and global variables are represented by its static attributes.

2.3 TRANSLATION
Before the translation is started, lexical analyzers and syntax analyzers are created -

every thread uses one of each. The first syntax analyzer finds the beginning of the first
procedure or function. All global variables, which are found during this searching, are
inserted into the global symbol table. As soon as the start of function is found, analyzer finds
out its end also - this is the place, where any other syntax analyzer can start reading of source
code. No other thread can search for procedure start - it can either translate any previously
found one, or it must wait until this thread finishes searching.

Location of the end of function consists in providing fast syntax analysis of the input.
All lexical symbols expect of begin, case and end are omitted. These symbols are counted and
the place, where the number of end symbols is equal to the count of begin and case symbols is
marked as the end of actual function. (This is given by the syntax structure of Pascal - if the
input language was another one, the rule would be different). Actual thread can begin
translation of the found function and another thread can start new search.

The translation of procedure is now independent on the other threads. Analyzer returns
to the procedure start and provides complete syntax analysis and creates appropriate syntax
tree. When the whole syntax tree is created, local optimizations and target code generation are
processed.

2.4 OPTIMIZATION
Optimization is a fundamental part of the translation. However they are not

implemented in testing compiler. They are just replaced by elemental simulation - empty
program loop is inserted instead of them and its duration can be changed from the command
line of the compiler. Program was tested with several values of this duration.

Here are the examples of any local optimization, which can be provided: dead code
elimination (detection of code, which is never executed in the program and his removing),
detection of common sub-expressions, live variables detection, transfer of condition
evaluation to the loop end, evaluation of constant sub-expressions etc.

3 RESULTS

This sample compiler has been tested on various source files with several settings of
local optimization duration on 4 processors computer Sun Enterprise 450 (its further
specification is available on the http://www.fit.vutbr.cz/CVT/e450.html.en).

Following tables contain times of the translation of some simple programs (it has been
executed a few times in a loop to get measurable values). Optimization setting denotes a
number of cycles of empty loop (just incrementing variable). Sequential translation uses
distinct algorithm - it does not require searching of procedure start and end. It is not tasked
with any additional computation.

0 10000 100000 1000000
Sequential translation 8,3 10,0 26,0 180,0
2 threads 8,3 9,1 16,5 94,0
3 threads 8,2 8,6 12,6 67,0
4 threads 8,2 8,5 10,9 52,0

Optimization setting

Tab. 1: Translation of sample file 1 - 6767 bytes, 26 short functions

0 10000 100000 1000000
Sequential translation 4,5 4,9 9,1 51,0
2 threads 4,8 4,8 7,0 31,0
3 threads 4,5 4,7 5,8 23,0
4 threads 4,5 4,8 5,5 17,3

Optimization setting

Tab. 2: Translation of sample file 2 -1299 bytes, 7 short functions

It is obvious from the table, that acceleration of parallel translation widely depends on
optimization setting. This is because local optimizations of several procedures are not
dependent and they can be performed together. On the other hand, input file reading must be
strictly synchronized to assure correct translation - every thread must compile different part of
the source program. Inserting symbols to the global symbol table must be synchronized also.

Appropriate column of the tables above must be selected to evaluate results - the
column, which mostly corresponds to real compilers. The setting 100000 of optimization

http://www.fit.vutbr.cz/CVT/e450.html.en)

extends sequential translation 2 or 3 times. This value can be optimal. The following picture
summarizes attained acceleration for this setting.

1,00

1,00

1,30

1,58

1,57

2,06

1,65

2,39

file 2

file 1

1
2
3
4

Fig. 2: Translation acceleration

There is an approach to improve these results. You can see, that lexical analysis is
provided twice. First it is provided in combination with fast syntax analysis when finding
independent parts. Second it is provided while translating code. It is obvious, that sequence of
tokens can be stored in memory first time and then the second analysis is not required. In
addition the lexical analysis can be provided in parallel. It is subject of present research.

REFERENCES
[1] Beneš, M., Hruška, T., Kolář, D.: Compilers, [texts for lectures], VUT Brno

[2] Beneš, M., Generování cílového programu pro JVM, [a library documentaion]

[3] Lindholm T., Yellin F., The Java™ Virtual Machine Specification, Second Edition,
Document available on URL http://java.sun.com/docs/books/vmspec/
(january 2003)

[4] Meduna, A.: Moderní teoretická informatika, [texts for lectures]

[5] OpenMP C and C++ Application Program Interface, Version 2.0, March 2002

http://java.sun.com/docs/books/vmspec/

