
XSL STYLESHEET COMPILER

Marek BĚHÁLEK, Doctoral Degree Programme (1)
Department of Computer Science, FEI VŠB - TU Ostrava

E-mail: marek.behalek@vsb.cz

Supervised by: Dr. Miroslav Beneš

ABSTRACT

XML is a flexible way how to create self-describing data and share them trough the
Internet. XSLT provides a complementary language describing how to perform a transfor-
mation of a source XML document into a resulting new XML document. XSLT defines
transformations which should be processed but not how to do it. Almost all XSLT proces-
sors (applications that perform transformations) that are currently available work like in-
terprets. Similarly like in programming languages, using a compiler instead of an interpret
can also dramatically improve performance. This article describes different approaches for
creating such a compiler.

1 INTRODUCTION

When we are building an information system we must think about a support for small
devices like a PDA or a cell phone. Nearly every person has a cell phone. These devices
are smarter from year to year. Now they support Java and it’s only a matter of time when
we will truly need a support of such devices in our information system. PDAs are really
computers, they are not only devices for viewing data but can run complex applications.
Some PDAs are with their computational performance and amount of memory comparable
to desktop computers from not so far history. Way how we present a data and how we pro-
cess a transformation of this data is even more important for these devices with restricted
performance. Technologies based on XML seem to be the right solution.

1.1 XML

XML - eXtensible Markup Language - is well known language that describes a set
of rules for defining semantic tags that break a document into parts and identify different
parts of the document. It is a meta-markup language that defines the syntax used to define
other domain-specific, semantic, structured markup languages. It is very well documented
by W3C [4], can be 100% ASCII text and is freely available. It is commonly known and
nearly every modern programming language integrates tools and libraries for processing

XML documents. XML is a flexible way how to createself-describing dataand to share
both the format and the data on the World Wide Web.

1.2 XSL

XSL is a language for expressing stylesheets. It consists of two parts: a language
for transforming XML documents, and an XML vocabulary for specifying formatting se-
mantics. In this article we discuss the first one, used for transforming XML documents.
Well-formed XML document has a tree structure. A transformation expressed in XSLT de-
scribes rules for transforming a source XML tree into a resulting XML tree. This operation
covers a wide range of processing tasks including: transforming XML document to HTML
page, searching for data in XML documents or creatingdocument views(same data sorted
by different criteria, extracting sensitive information, etc.).

An XSLT stylesheet is an XML document that uses elements from XSLT vocabulary
to describe a transformation. The document element is an<xsl:stylesheet> element
whose contents is a set of rules describing the transformation to be performed. Each rule
in stylesheet contains an associated XPath pattern that defines the node in the source doc-
ument to which the rule should apply. Each rule is called a template and is represented by
an<xsl:template> element with amatch=“pattern” attribute for XPath pattern.
Each rule is called a template because the literal elements and attributes contained inside
the body of the rule act as a model for constructing some part of the result tree.

XPath is a language for addressing parts of an XML document. This is a primary
purpose of this language, but it also provides basic facilities for manipulations of strings,
numbers and booleans. XPath pattern is a location path in a tree formed by XML document,
where each step (separated by the slash) selects a set of nodes relative to the context node.

2 DESCRIBING THE PROBLEM

Let us consider the model situation: Our application is based on Client-Server archi-
tecture. The Server is a powerful computer with a lot of memory and a huge computational
performance. The Client can be a device like Pocket PC, with limited memory and compu-
tational performance, which is connected to the Internet by a cell phone. This connection
is expensive and rather slow. Such a client worries about amount of data that must be
downloaded and stored. It does not want to beon-line all the time. In these cases XML
and XSLT can help as a powerful tool. Client downloads data like an XML document
only once and when he wants a different view on the same data, he simply applies some
XSL transformation. XSLT stylesheet is smaller because it only describes an operation
that must be performed and does not contain all data again. Another advantage is that
the client can store this XSLT stylesheet and use it when neededoff-line. Using XML for
data representation and XSLT for creating different views over this data can save usage of
memory and amount of data for downloading but now it is the client that must accomplish
the transformation. This may consume a lot of time.

Most of XSLT processors work like an interpret.We can dramatically increase per-
formance when we compile XSLT stylesheets (see Fig. 1). The reason is the same as in
Java or C languages. Execution of binary form is much faster. Another advantage is that

execution of binary form does not require the presence of the original translator, only an
appropriate physical or virtual machine. In our example it means that the transformation is
quickly performed on the server side and only a relatively small binary form is sent to the
user. Also the XSLT processor, the application that performs the transformation, is divided
into two parts — a compiler that can be only on the server side and a virtual machine which
can be very simple.

In p u t.x m l O u tp u t.x m l

R u les .x s l

X S LT Vir tu al m ac h in e

X S LT c o m p iler

b in ary fo rm

Figure 1: XSLT compiler scheme

Using a compiler instead of an interpreter clearly separates compile-time computa-
tions from run-time computations. The separation line depends on the level of machine
instructions. Splitting a heterogeneous, high-level instruction into number of atomic, low-
level instructions exposes some run-time checks and allows compiler to take care of them.
For example, a general CMP comparison instruction checks operand types at run-time. If
it is replaced with few type-specific variants then the compiler checks operand types at
compile-time and generates appropriate type casting instructions if needed.

Another advantage of such an approach is that once compiled the XSLT stylesheet
in binary form can be used for this concrete transformation many times, without need of
translation of the original XSL stylesheet again. This may be very useful, considering a
situation when a Web server generates HTML pages from XML documents using XSLT
stylesheets. This is an easy way how to add presentation qualities to pure content-oriented
XML. The interpreter must parse XSLT and then perform the transformation. Time for
parsing XSLT can be comparable to time when relatively small XML tree is processed.
Compilation of XSLT can greatly improve performance of such a Web server when it is
used by many users at the same time.

3 RELATED WORK

The concept of compiling XSLT to binary form was proposed by A. Novoselsky
and K. Karum [1]. Their article presents a concept of an XSLT Virtual machine. Their
XSLT Virtual machine is a software implementation of an imaginary CPU designed to run
a compiled XSLT code. The instruction set and the memory management of this imaginary

CPU is adapted for processing XSLT stylesheets. This XSLT processor was presented only
like a concept. Exact specification does not exist, there is only a short paper with proposed
solution. Currently there also does not exist any implementation of such a virtual machine
or XSLT compiler.

The idea of XSLT compiler is built into XSLT processors of same companies: Oracle
Inc., Ambrosoft Inc. or Apache Software Foundation. All these XSLT compilers follow the
same approach. The binary form that they produce is a Javaclassfile. All these products
are based on Java.

Another platform commonly used with PDAs is a restriction of Microsoft .NET
framework called Compact.NET. This environment should also support XSLT compilation
techniques, but in the current version 1.0 it does not seem to be available yet.

4 PROPOSED SOLUTION

Using aclassfile as the XSLT compiler binary form binds it too close to Java Vir-
tual Machine. It is nearly impossible to add support for a different platform (for example
Microsoft .NET Framework). I propose to compose the output binary form from an instruc-
tion set of a virtual CPU for an XSLT stylesheet processing. Then a binary form generated
by XSLT compiler is a sequence of these XSLT CPU’s instructions and the runtime envi-
ronment is a virtual machine processing this instruction set.

This approach has one great advantage. The platform used by a provider of such
a compiled stylesheet is independent of the client’s platform. The compiler makes a bi-
nary form — XSLTprogram. Once compiled XSLTprogramscan be run many times on
different XSLT Virtual machines running with different platforms. Also, XSLTprograms
become independent of the implementation language. In other words, there should be no
difference between code generated from Java XSLT compiler and code from C/C++/C#
XSLT compiler, they all should be able to run on the same XSLT Virtual machine.

This approach may bring another improvement in the process of optimization. For
example in an XSLT Virtual machine implementation we can support special abilities of a
destination platform.

4.1 XSLT CPU SPECIFICATION

The full description of the XSLT CPU is beyond possibilities of this paper. We
present only main properties of XSLT CPU that was created and implemented like a virtual
machine.

Virtual machine has a stack-based architecture. This goes hand-in-hand with the tree
structure of an XSLT stylesheet.

The compilation consists of two relatively independent activities — creating the rep-
resentation of XPath elements and XSL templates.

As mentioned, separation between compile-time computations and run-time compu-
tations depends on the level of machine instructions. Low-level instructions (comparable
to JVM instructions) was decided to use for purpose of XSLT CPU. XSLT stylesheets are
commonly short. The size of a generated binary form is generally small and the com-
piler can perform a lot of checks at a compile time. Instructions are mostlystack-based.

They take their operand’s values from the top of the stack and replace them with the result.
They can be divided into three groups: system instructions (loops, conditional instruc-
tions, instructions for arithmetic operations,...), instructions for processing XPath elements
and instruction for processing XSL templates. When creating the instruction set it is not
necessary to take care about elementary XML processing. For these activities high level
instructions are used. We suppose that nearly every platform implements some libraries for
XML processing that can be simply mapped into these instructions in the virtual machine
implementation.

5 EXPERIMENTAL RESULTS

A prototype of the presented XSLT compiler is currently implemented reusing some
parts of the open-source product Xalan written in Java. The most important change was in
a process of binary form creation. Instead of a Java class file the new compiler generates
a file with instructions for the presented XSLT CPU — XSLTprogram. The run-time
environment (virtual machine) is implemented in C# to be able to run in the Microsoft
.NET Compact Framework used on the client side of our information system. The full
implementation of this XSLT compiler and run/time is still in progress.

6 CONCLUSIONS

The XSLT stylesheet compiling technique can be useful also for desktop applica-
tions. But it brings a great advantage for XSL transformations processing when small
devices (like PDAs) are used. Then this technique can greatly improve performance and
minimize a limited memory usage. That can make XSL transformations even more useful
and bring them to areas where no one would expect them.

REFERENCES

[1] Anguel Novoselsky, K. Karun.:XSLTVM - an XSLT Virtual Machine.
See: http://www.gca.org/papers/xmleurope2000/papers/s35-03.html/.

[2] Jacek R. Ambroziak.:Gregor, the next generation XSLT compiler.
See: http://www.ambrosoft.com/.

[3] The Apache Software FoundationXalan-Java documentation
See: http://xml.apache.org/xalan-j/.

[4] World Wide Web Consortium.:Extensible Markup Language (XML) 1.0.
See: http://www.w3c.org/xml/

[5] World Wide Web Consortium.:XSL
See: http://www.w3c.org/xsl/

[6] Oracle Corporation.:Transforming XML with XSLT.
See: http://technet.oracle.com/tech/xml/techinfo.html.

