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ABSTRACT

This thesis is a contribution to solution of the problem of numerical modelling of
physical processes in an internal combustion engine. The model of mass transport was
precised with the mechanism of molecular diffusion. There are some numerical problems
like the estimation of the stability condition for the time step or the reduction of numerical
diffusion arising from the upwind method used to approximate the advective term. These
problems were successfully tested for one-dimensional mass transport with uniform fluid
flow.

1 INTRODUCTION

The main objective of the model of processes in an internal combustion engine is
to predict the production of nitrogen oxides during the work of an engine by a complete
simulation of relevant physical and chemical processes. Whole model is divided into three
main problems: flow, mass and energy transport, and chemical reactions. They are solved
as isochoric processes and then adiabatic expansion (or compression) is applied to all of
the resulting quantities because the studied volume is changing in time.

This thesis precised the original advective mass transport model with the mechanism
of molecular diffusion. There are some problems which should be solved for successful
use of the derived numerical model of diffusion based on the finite volume method. The
explicit method for time discretization was used, therefore the stability condition for the
time step is necessary to be evaluated. It was successfully solved for incompressible fluid
flow in the meantime. The next problem is the phenomenon of numerical diffusion arising
from the upwind method used to approximate the advective term of the transport equation.
It can be reduced by a convenient reduction of diffusion coefficients.

The precised model was successfully tested on 1D problems with uniform fluid flow.
Two 2D tests were made, too. They show quantitatively good results.



2 PHYSICAL MODEL

2.1 GOVERNING EQUATION

The model is governed by the equation of mass conservation which can be written
for a control volumeV ⊂Ω (hereΩ respresents the inner volume of a cylinder) and the gas
component̀ (1≤ `≤ n`) as

d

dt

∫
V

ρc`dx+
∫
∂V

(ρc`v+ j `) ·ndS=
∫
V

q`dx, (1)

whereρ is the density of a gas mixture,c` is the mass fraction of thè-th component,
v is the velocity vector,j ` is the diffusion flux,q` is the density of sources and sinks of
the component andn denotes the outer normal vector to the boundary∂V of the control
volumeV.

The diffusion flux is approximated by the equation similar to the Fick’s law of diffu-
sion

j ` =−ρD`∇c`, (2)

whereD` is the effective diffusion coefficient of thè-th component.

2.2 BOUNDARY AND INITIAL CONDITIONS

The open valve of an engine is described by the Dirichlet boundary condition

ρ = ρD

c` = c`,D
on ΓD, (3)

whereΓD is the part of the boundary∂Ω. On the remaining partΓN = ∂Ω\ΓD, the homo-
geneous Neumann boundary conditionvn = 0, (∇c`)n = 0 is assigned (indexn denotes the
projection to the outer normal of the boundary). That represents the impermeability of the
walls.

The initial conditions are chosen such that the density and mass fractions at the be-
ginning are constant in whole volume ofΩ, i. e.

ρ = ρ0

c` = c0
`

at t = 0. (4)

3 NUMERICAL MODEL

At first, the discretization of the volumeΩ must be done. It is approximated by
the mesh of control volumesT, the set of their sidesE and the set of pointsP, where
every pointxK ∈ P has assigned exactly one control volumeK ∈ T. This mesh must fulfil
the properties of admissible meshes (see definition in [2]). Let’s denote:m(K) andm(σ)
the 3D and 2D Lebesgue measure ofK ∈ T andσ ∈ E, respectively;h the maximum of
diameters of all control volumes. Furthermore for each control volumeK ∈ T we denote:
N(K) the set of adjacent control volumes ofK, EK the set of sides common to the volume



K and volumesL ∈ N(K) (for adjacent control volumesK andL let σ = K|L means that
σ is the common side ofK andL); dK,σ is the distance between the pointxK and the sideσ;
dK|L is the distance between pointsxK andxL for all (adjacent) pairs(K,L) ∈ T2. At last
we denoteτK|L = m(K|L)/dK|L andτK,σ = m(σ)/dK,σ.

The time discretization is realized by the ascending sequence of time valuestn,
n∈ N0, t0 = 0 with the difference (time step)∆tn = tn+1− tn.

In whole model, the same mesh is used by all submodels (for the model of fluid flow
solved by the finite element method, for the model of mass and energy transport, and the
model of chemical reactions). This mesh is constructed from trilateral prismatic elements
(control volumes) and suits conditions of admissible meshes.

3.1 NUMERICAL SCHEME

The numerical scheme is based on the finite volume method which is derived from
the equation (1). With the explicit method used for time, the resulting discrete equation
may be written for each control volumeK from T as

m(K)
ρn+1

`,K −ρn
`,K

∆tn
+ ∑

σ∈EK

Fn
`,K,σ + ∑

σ∈EK

f n
K,σcn

`,σ,+ = m(K)qn
Kcn

`,K,+, (5)

whereρn
`,K = ρn

Kcn
`,K. The lower indexK denotes the quantity in the pointxK of the control

volumeK and the upper indexn means its value in the timetn.
The other symbols have the following meaning. The mass fractioncn

`,σ,+ is chosen
by the upwind method (analogical approximation is applied to the fractioncn

`,K,+), i. e.

cn
`,σ,+ =

{
cn
`,K for f n

K,σ ≥ 0,

cn
`,L for f n

K,σ < 0, whereσ = K|L,
cn
`,K,+ =

{
cn
`,K,q for qn

K ≥ 0,

cn
`,K for qn

K < 0.
(6)

The mass fractioncn
`,K,q is given by the composition of a mixture at the source of mass.

The resulting variables of the model are expressed as

ρn+1
K =

n`

∑̀
=1

ρn+1
`,K , cn+1

`,K =
ρn+1

`,K

ρn+1
K

. (7)

The diffusion fluxFn
`,K,σ is computed by the four point difference method. All of these

approximations are conservative which implies a conservative character of the numerical
scheme.

3.2 STABILITY

Because of the use of the explicit method for time, the stability analysis must be per-
formed. The stability condition was derived only for incompressible flow with the constant
densityρ. It may be written in the form

∆tn ≤
ρm(K)

∑
σ∈En

K,+

f n
K,σ +ρ ∑

L∈N(K)
τK|LD

n
`,K|L +ρ ∑

σ∈EK,ΓD

τK,σDn
`,σ

, ∀K ∈ T. (8)



Here En
K,+ represents the set of sides with nonnegative sing of the advective fluxf n

K,σ,
EK,ΓD is the set of sides fromEK which hold σ ⊂ ΓD, The symbolDn

`,σ represents the
diffusion coefficient on the sideσ. It can be seen that this condition sets the upper bound
for the time step proportionally to the second order of the spatial discretization parameter
h; in case of pure advection transport the stability condition is the first order ofh.

4 TESTS

The implemented model was tested on simple meshes. The 1D test problem is de-
scribed by the equation

∂c
∂t

(x, t)+v
∂c
∂x

(x, t)−D
∂2c
∂x2(x, t) = 0, c(0, t) = 1, c(x,0) = 0, (x, t) ∈ (0,∞)× (0,T), (9)

whereD andv are positive numbers. The numerical solution can be compared with the
analytic solution

c(x, t) =
1
2

[
exp

(vx
D

)
erfc

(
x+vt

2
√

Dt

)
+erfc

(
x−vt

2
√

Dt

)]
. (10)

For high values ofvx/D the first term may be neglected (especially for numerical evalua-
tion).

If the control volumes are numbered by the sequence of indices 0≤ i ≤ N then the
numerical scheme can be rewritten as

cn+1
i = cn

i −v
∆t
h

(cn
i −cn

i−1)+D
∆t
h2(cn

i−1−2cn
i +cn

i+1) (11)

It can be shown that the estimate of the numerical diffusion coefficient has the form

Dnum=
1
2

vh

(
1−v

∆t
h

)
. (12)

The simplest way to reduce the magnitude of numerical diffusion is to subtract this artificial
coefficient from the “physical” diffusion coefficientD. Naturally, the condition for the
time step∆t must be achieved in order to ensure non-negativity of the reduced coefficient
together with the stability condition. It can be rewritten in the form

D̃ = D−Dnum≥ 0, ∆t ≤ h2

hv+2D
. (13)

Analysis of both of these conditions shows that for rougher meshes the time step must be
set close to the stability boundary to keep the reduced coefficient nonnegative but for fine
meshes this problem does not occur.

Numerical tests of the problem (9) were made for various input parameters (including
tests of pure diffusion and advection). All of their results was accorded to our theoretical
prepositions (see fig. 1 for representative examples).
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Figure 1: Numerical solutions of two tests with the analytic solution of advection-diffusion
equation): (a) stable solutions with and without correction of numerical diffusion, (b) un-
stable solution

5 CONCLUSIONS

There was the diffusive-advective model of mass transport formulated and imple-
mented. The stability analysis was performed for incompressible fluid flow and success-
fully tested for one and two-dimensional problems. On these problems, the reduction of
numerical diffusion was analyzed and tested (quantitatively for 1D, qualitatively for 2D
tests). The calibration cannot be done at present because valid data for comparison are not
currently available.
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